Shape optimization for drag reduction in linked bodies using evolution strategies
نویسندگان
چکیده
0045-7949/$ see front matter 2010 Elsevier Ltd. A doi:10.1016/j.compstruc.2010.09.001 ⇑ Corresponding author. E-mail addresses: [email protected] (M Colorado.edu (O.V. Vasilyev), [email protected] (P. Koum We present results from the shape optimization of linked bodies for drag reduction in simulations of incompressible flow at moderate Reynolds numbers. The optimization relies on the covariance matrix adaptation evolution strategy (CMA-ES) and the flow simulations use vortex methods with the Brinkman penalization to enforce boundary conditions in complex bodies. We exploit the inherent parallelism of CMA-ES, by implementing a multi-host framework which allows for the distribution of the expensive cost function evaluations across parallel architectures, without being limited to one computing facility. This study repeats in silico for the first time Ingo Rechenberg’s pioneering wind tunnel experiments for drag reduction that led to the inception of evolution strategies. The simulations confirm that the results of these experimental studies indicate a flat plate is not the optimal solution for drag reduction in linked bodies. We present the vorticity field of the flow and identify the governing mechanisms for this drag reduction by the slightly corrugated linked plate configuration. 2010 Elsevier Ltd. All rights reserved.
منابع مشابه
OPTIMAL DESIGN OF GRAVITY DAM USING DIFFERENTIAL EVOLUTION ALGORITHM
The shape optimization of gravity dam is posed as an optimization problem with goals of minimum value of concrete, stresses and maximum safety against overturning and sliding need to be achieved. Optimally designed structure generally saves large investments especially for a large structure. The size of hydraulic structures is usually huge and thus requires a huge investment. If the optimizatio...
متن کاملA Review on the Drag Reduction Methods of the Ship Hulls for Improving the Hydrodynamic Performance
Hydrodynamic performance of a marine vessel mainly depends on the frictional and pressure resistance. Pressure drag reduction could be achieved by improving the shape of the vessels with implementation of modern hull forms. Hull forms optimization techniques could also be used for this purpose. Other techniques are needed to deal with the viscous portion of the total resistance, which is mainly...
متن کاملNumerical Investigation on the Effect of Tunnel Height on Drag Reduction in a High Speed Trimaran
There are different methods to reduce drag in high speed hulls. One of these methods is a change in the shape of the body by adding longitudinal side tunnels. In this paper it has been attempted to determine the influence of the tunnel height on hydrodynamic characteristics of the hull to achieving an optimum shape for the tunnel. To achieve this purpose, numerical simulation of the problem has...
متن کاملComparison of Lift and Drag Forces for Some Conical Bodies in Supersonic Flow Using Perturbation Techniques
Numerical methods are not always convergent especially in higher velocities when shock waves are involved. A comparison analysis is performed to study the supersonic flow over conical bodies of three different cross sections circular, elliptic and squircle (square with rounded corners) shaped using Perturbation techniques to find flow variables analytically. In order to find lift and drag forc...
متن کاملApplication of Genetic Algorithms in Shape Optimization for Aerodynamic Bodies
The objective of this study is to minimize the drag coefficient of aerodynamics bodies for a specified design Reynolds number regime. With the aerodynamics model the gradient of the objective function (drag coefficient) cannot be determined analytically. Furthermore, it is expected that the objective function is multi-modal, i.e. it shows more than one minimum. Therefore, the optimization algor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011